Comparison of Recurrent Neural Network, Adaptive Neuro-Fuzzy Inference System and Stochastic Models in Eğirdir Lake Level Forecasting
Veysel Güldal () and
Hakan Tongal
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2010, vol. 24, issue 1, 105-128
Abstract:
Accurate prediction of lake-level changes is a very important problem for a wise and sustainable use. In recent years significant lake level fluctuations have occurred and can be related to the climatic change. Such a problem is crucial to the works and decisions related to the water resources and management. This study is aimed to predict future lake levels during hydrometeorological changes and anthropogenic activities taking place in the Lake Eğirdir which is the most important water storage of Lake Region, one of the biggest fresh water lakes of Turkey. For this aim, recurrent neural network (RNN), adaptive network-based fuzzy inference system (ANFIS) as prediction models which have various input structures were constructed and the best fit model was investigated. Also, the classical stochastic models, auto-regressive (AR) and auto-regressive moving average (ARMA) models are generated and compared with RNN and ANFIS models. The performances of the models are examined with the form of numerical and graphical comparisons in addition to some statistic efficiency criteria. The results indicated that the RNN and ANFIS can be applied successfully and provide high accuracy and reliability for lake-level changes than the AR and the ARMA models. Also it was shown that these stochastic models can be used in the lake management policies with the acceptable risk. Copyright Springer Science+Business Media B.V. 2010
Keywords: Recurrent neural network (RNN); Adaptive neuro-fuzzy inference system (ANFIS); Autoregressive models; Lake-level forecasting; Eğirdir Lake (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-009-9439-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:24:y:2010:i:1:p:105-128
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-009-9439-9
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().