Multiscale Effects on Spatial Variability Metrics in Global Water Resources Data
Shama Perveen () and
L. James
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2010, vol. 24, issue 9, 1903-1924
Abstract:
Spatial scales and methods for dealing with scale have been widely discussed in the water resources literature. Different spatial processes operate at different scales so interpretations based on data from one scale may not apply to another. Understanding the behavior of phenomena at multiple-scales of data aggregation is thus imperative to accurate integrations of data and models at different geographic resolutions. This study tests theoretical concepts of scale by presenting empirical results of multiscale GIS and statistical analyses on gridded water-availability, water use and population data for the Danube Basin in Europe, with results corroborated by similar tests in the Ganges (South Asia) and Missouri (North America) Basins. Fine-resolution datasets were aggregated to coarser grid sizes and standard statistical measures of spatial variability were computed. Statistical analysis of spatial variability demonstrated two distinctly different cases for unscaled and scaled variables. Results show that variance (and standard deviation) in unscaled variables like freshwater supply, use and population increases at coarser scales—contrary to the common assumption of decreasing variability as grid-cell size increases. On the other hand, a decreasing trend in variability with scale is noted for variables scaled to area or population (like population density, water availability per capita etc.). Moreover, relationships between variability and scale show strong non-linear trends. No mention of these relationships has been found in the water resources or socio-economic literature for scale and variability. Regression analyses suggest that power functions are the most appropriate model to fit trends in increasing variability at multiple scales. These results can be applied to interpretations of water-stress and water scarcity data and their locations relative to water sources or topographic barriers. Copyright Springer Science+Business Media B.V. 2010
Keywords: Spatial variation; Multiscale analysis; Water availability; Scarcity; Grid data (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-009-9530-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:24:y:2010:i:9:p:1903-1924
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-009-9530-2
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().