Singular Spectrum Analysis and ARIMA Hybrid Model for Annual Runoff Forecasting
Qiang Zhang (),
Ben- De Wang,
Bin He,
Yong Peng and
Ming-Lei Ren
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2011, vol. 25, issue 11, 2683-2703
Abstract:
High accuracy forecasting of medium and long-term hydrological runoff is beneficial to reservoir operation and management. A hybrid model is proposed for medium and long-term hydrological forecasting in this paper. The hybrid model consists of two methods, Singular Spectrum Analysis (SSA) and Auto Regressive Integrated Moving Average (ARIMA). In this model, the time series of annual runoff are first decomposed into several sub-series corresponding to some tendentious and periodic motions by using SSA and then each sub-series is predicted, respectively, through an appropriate ARIMA model, and lastly a correction procedure is conducted for the sum of the prediction results to ensure the superposed residual to be a pure random series. The annual runoff data of two reservoirs in China are analyzed as case studies. The results have been compared with the predictions made by ARIMA and Singular Spectrum Analysis-Linear Recurrent Formulae (SSA-LRF). It is shown that hybrid model has the best performance. Copyright Springer Science+Business Media B.V. 2011
Keywords: SSA; ARIMA; Medium and long-term hydrological forecasting; Biliuhe reservoir; Dahuofang reservoir (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-011-9833-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:25:y:2011:i:11:p:2683-2703
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-011-9833-y
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().