EconPapers    
Economics at your fingertips  
 

Soil Water Simulation and Predication Using Stochastic Models Based on LS-SVM for Red Soil Region of China

Jianqiang Deng (), Xiaomin Chen (), Zhenjie Du and Yong Zhang

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2011, vol. 25, issue 11, 2823-2836

Abstract: The seasonal drought and the low available soil moisture affect the agricultural production in red soil region, China. Therefore, it is necessary to simulate and predict the dynamic changes of soil water in the field. Presently, dynamic model has been applied to obtain the soil water information. While the simulation accuracy of dynamic model depends on many complicated parameters, which are difficult to obtain. In this study, the various nonlinear Stochastic Model of soil water simulation systems and chaotic time series analysis methods of prediction systems had been set up. In the nonlinear Stochastic Model of soil water simulation systems, the daily soil water content simulated by Least squares support vector machine (LS-SVM) with the meteorological factors had more stabilities and advantages in soil water simulation performance over the Back Propagation Artificial Neural Network (BP-ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS). In chaotic time series analysis method of prediction systems, the various signal preprocessing methods including the appropriate de-noising methods and wavelet decomposition methods were applied to preprocess the original chaotic soil water signal. The results of the prediction systems showed that the appropriate de-noising methods and the tendency of wavelet transformation had less effect on the delay time (τ) and embedding dimension (m). The de-noising methods may ignore the detail information of the soil water signal, while the appropriate wavelet transformation to get smaller Maximum Lyapunov Exponent (λ 1 ) of the chaotic soil water signal detail and tendency information can improve the predicting capacity. Copyright Springer Science+Business Media B.V. 2011

Keywords: Soil water models; Chaotic analysis; Artificial intelligence; De-noising methods; Wavelet (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-011-9840-z (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:25:y:2011:i:11:p:2823-2836

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-011-9840-z

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:25:y:2011:i:11:p:2823-2836