Multivariate Bayesian Regression Approach to Forecast Releases from a System of Multiple Reservoirs
Andres Ticlavilca () and
Mac McKee ()
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2011, vol. 25, issue 2, 523-543
Abstract:
This research presents a model that simultaneously forecasts required water releases 1 and 2 days ahead from two reservoirs that are in series. In practice, multiple reservoir system operation is a difficult process that involves many decisions for real-time water resources management. The operator of the reservoirs has to release water from more than one reservoir taking into consideration different water requirements (irrigation, environmental issues, hydropower, recreation, etc.) in a timely manner. A model that forecasts the required real-time releases in advance from a multiple reservoir system could be an important tool to allow the operator of the reservoir system to make better-informed decisions for releases needed downstream. The model is developed in the form of a multivariate relevance vector machine (MVRVM) that is based on a sparse Bayesian regression model approach. With this Bayesian approach, a predictive confidence interval is obtained from the model that captures the uncertainty of both the model and the data. The model is applied to the multiple reservoir system located in the Lower Sevier River Basin near Delta, Utah. The results show that the model learns the input–output patterns with high accuracy. Computing multiple-time-ahead predictions in real-time would require a model which guarantees not only good prediction accuracy but also robustness with respect to future changes in the nature of the inputs data. A bootstrap analysis is used to guarantee good generalization ability and robustness of the MVRVM. Test results demonstrate good performance of predictions and statistics that indicate robust model generalization abilities. The MVRVM is compared in terms of performance and robustness with another multiple output model such as Artificial Neural Network (ANN). Copyright Springer Science+Business Media B.V. 2011
Keywords: Forecasting; Reservoir; Water management; Bayesian; Machine learning (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-010-9712-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:25:y:2011:i:2:p:523-543
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-010-9712-y
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().