Wavelet Regression Model as an Alternative to Neural Networks for River Stage Forecasting
Ozgur Kisi ()
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2011, vol. 25, issue 2, 579-600
Abstract:
River stage forecasting is an important issue in water resources management and real-time prediction of extreme floods. The present study investigates the performance of the wavelet regression (WR) technique in daily river stage forecasting. The WR model was improved combining two methods, discrete wavelet transform and a linear regression model. Two different WR models were developed using the stage sub-time series, and these were compared with each other. The data from two stations on the Schuylkill River in Philadelphia were used. The root mean square errors (RMSE), mean absolute errors (MAE) and correlation coefficient (R) statistics were used for evaluating the accuracy of the WR models. The accuracy of the WR models was then compared with those of the artificial neural networks (ANN) models. Based on a comparison of these results, the WR models were found to perform better than the ANN models. For the upstream and downstream stations, it was found that the WR models with upstream readings of with RMSE = 0.070, MAE = 0.027, R = 0.937 and with downstream readings of RMSE = 0.048, MAE = 0.024, R = 0.969 in the validation stage performed better in forecasting daily river stages than the best accurate ANN models with upstream readings of RMSE = 0.168, MAE = 0.052, R = 0.802 and with downstream readings of RMSE = 0.115, MAE = 0.051, R = 0.807, respectively. Copyright Springer Science+Business Media B.V. 2011
Keywords: River stage; Discrete wavelet transform; Linear regression; Neural networks; Forecasting (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-010-9715-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:25:y:2011:i:2:p:579-600
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-010-9715-8
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().