Estimation of Scour Downstream of a Ski-Jump Bucket Using Support Vector and M5 Model Tree
Manish Goyal () and
C. Ojha
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2011, vol. 25, issue 9, 2177-2195
Abstract:
Estimation of scour downstream of a ski-jump bucket has been a topic of research among hydraulic engineers. For estimation of scour downstream of ski jump bucket, several empirical models are in use. In recent years, there has been emphasis to develop models which are capable of producing scour with high accuracy. Use of Artificial Neural Network (ANN) approach to model depth, width and length of scour hole indicates that performance of ANN models is far better than existing empirical models. At present, use of Support Vector Machines (SVMs) and M5 Pruned Model Tree are being considered in different disciplines to further improve upon the performance of ANN models as a potential alternate. With this in view, the present study deals with the development of regression models for computing various parameters of scour hole using SVMs and M5 Model Tree. A comparative evaluation of the performance of ANN versus SVMs and M5 Model Tree clearly shows that SVMs and M5 Model Tree can prove more useful than ANN models in estimation of scour downstream of a ski jump bucket. Further, M5 model tree offers explicit expressions for use by design engineers. Copyright Springer Science+Business Media B.V. 2011
Keywords: ANN; M5; Scour; Ski-Jump Bucket; SVMs; Hydraulics; Prediction (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-011-9801-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:25:y:2011:i:9:p:2177-2195
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-011-9801-6
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().