EconPapers    
Economics at your fingertips  
 

Forecasting Urban Water Demand Via Wavelet-Denoising and Neural Network Models. Case Study: City of Syracuse, Italy

Salvatore Campisi-Pinto (), Jan Adamowski () and Gideon Oron ()

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2012, vol. 26, issue 12, 3539-3558

Abstract: Forecasting urban water demand can be of use in the management of water utilities. For example, activities such as water-budgeting, operation and maintenance of pumps, wells, reservoirs, and mains require quantitative estimations of water resources at specified future dates. In this study, we tackle the problem of forecasting urban water demand by means of back-propagation artificial neural networks (ANNs) coupled with wavelet-denoising. In addition, non-coupled ANN and Linear Multiple Regression were used as comparison models. We considered the case of the municipality of Syracuse, Italy; for this purpose, we used a 7 year-long time series of water demand without additional predictors. Six forecasting horizons were considered, from 1 to 6 months ahead. The main objective was to implement a forecasting model that may be readily used for municipal water budgeting. An additional objective was to explore the impact of wavelet-denoising on ANN generalization. For this purpose, we measured the impact of five different wavelet filter-banks (namely, Haar and Daubechies of type db2, db3, db4, and db5) on a single neural network. Empirical results show that neural networks coupled with Haar and Daubechies’ filter-banks of type db2 and db3 outperformed all of the following: non-coupled ANN, Multiple Linear Regression and ANN models coupled with Daubechies filters of type db4 and db5. The results of this study suggest that reduced variance in the training-set (by means of denoising) may improve forecasting accuracy; on the other hand, an oversimplification of the input-matrix may deteriorate forecasting accuracy and induce network instability. Copyright Springer Science+Business Media B.V. 2012

Keywords: Artificial neural networks; Wavelets; Denoising; Forecasting; Water demand (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-012-0089-y (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:26:y:2012:i:12:p:3539-3558

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-012-0089-y

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:26:y:2012:i:12:p:3539-3558