An Effective Approach to Long-Term Optimal Operation of Large-Scale Reservoir Systems: Case Study of the Three Gorges System
Fang-Fang Li,
Jia-Hua Wei,
Xu-Dong Fu () and
Xin-Yu Wan
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2012, vol. 26, issue 14, 4073-4090
Abstract:
A new approach for optimization of long-term operation of large-scale reservoirs is presented, incorporating Incremental Dynamic Programming (IDP) and Genetic algorithm (GA) . The immense storage capacity of the large scale reservoirs enlarges feasible region of the operational decision variables, which leads to invalidation of traditional random heuristic optimization algorithms. Besides, long term raised problem dimension, which has a negative impact on reservoir operational optimization because of its non-linearity and non-convexity. The hybrid IDP-GA approach proposed exploits the validity of IDP for high dimensional problem with large feasible domain by narrowing the search space with iterations, and also takes the advantage of the efficiency of GA in solving highly non-linear, non-convex problems. IDP is firstly used to narrow down the search space with discrete d variables. Within the sub search space provided by IDP, GA searches the optimal operation scheme with continuous variables to improve the optimization precision. This hybrid IDP-GA approach was applied to daily optimization of the Three Gorges Project-Gezhouba cascaded hydropower system for annual evaluation from the year of 2004 to 2008. Contrast test shows hybrid IDP-GA approach outperforms both the univocal IDP and the classical GA. Another sub search space determined by actual operational data is also compared, and the hybrid IDP-GA approach saves about 10 times of computing resources to obtain similar increments. It is shown that the hybrid IDP GA approach would be a promising approach to dealing with long-term optimization problems of large-scale reservoirs. Copyright Springer Science+Business Media B.V. 2012
Keywords: Reservoir optimization; Long-term; Large scale; Genetic algorithm; Incremental dynamic programming; The Three Gorges System (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-012-0131-0 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:26:y:2012:i:14:p:4073-4090
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-012-0131-0
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().