EconPapers    
Economics at your fingertips  
 

Daily Forecasting of Dam Water Levels: Comparing a Support Vector Machine (SVM) Model With Adaptive Neuro Fuzzy Inference System (ANFIS)

Afiq Hipni, Ahmed El-shafie, Ali Najah (), Othman Karim, Aini Hussain and Muhammad Mukhlisin

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2013, vol. 27, issue 10, 3803-3823

Abstract: Reservoir planning and management are critical to the development of the hydrological field and necessary to Integrated Water Resources Management. The growth of forecasting models has resulted in an excellent model known as the Support Vector Machine (SVM). This model uses linearly separable patterns based on an optimal hyperplane, which are extended to non-linearly separable patterns by transforming the raw data to map into a new space. SVM can find a global optimal solution equipped with Kernel functions. These Kernel functions have high flexibility in the forecasting computation, enabling data to be mapped at a higher and infinite-dimensional space in an implicit manner. This paper presents a new solution to the expert system, using SVM to forecast the daily dam water level of the Klang gate. Four categories are identified to determine the best model: the input scenario, the type of SVM regression, the number of V-fold cross-validation and the time lag. The best input scenario employs both the rainfall R(t-i) and the dam water level L(t-i). Type 2 SVM regression is selected as the best regression type, and 5-fold cross-validation produces the most accurate results. The results are compared with those obtained using ANFIS: all the RMSE, MAE and MAPE values prove that SVM is a superior model to ANFIS. Finally, all the results are combined to determine the best time lag, resulting in R(t-2) L(t-2) for the best model with only 1.64 % error. Copyright Springer Science+Business Media Dordrecht 2013

Keywords: Support vector machine; Dam water levels; Klang gate (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-013-0382-4 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:27:y:2013:i:10:p:3803-3823

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-013-0382-4

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:27:y:2013:i:10:p:3803-3823