Applying Genetic Algorithm and Neural Network to the Conjunctive Use of Surface and Subsurface Water
Yu Chen,
Liang Chang (),
Chun Huang and
Hone Chu
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2013, vol. 27, issue 14, 4757 pages
Abstract:
The conjunctive use of surface and subsurface water is one of the most effective ways to increase water supply reliability with minimal cost and environmental impact. This study presents a novel stepwise optimization model for optimizing the conjunctive use of surface and subsurface water resource management. At each time step, the proposed model decomposes the nonlinear conjunctive use problem into a linear surface water allocation sub-problem and a nonlinear groundwater simulation sub-problem. Instead of using a nonlinear algorithm to solve the entire problem, this decomposition approach integrates a linear algorithm with greater computational efficiency. Specifically, this study proposes a hybrid approach consisting of Genetic Algorithm (GA), Artificial Neural Network (ANN), and Linear Programming (LP) to solve the decomposed two-level problem. The top level uses GA to determine the optimal pumping rates and link the lower level sub-problem, while LP determines the optimal surface water allocation, and ANN performs the groundwater simulation. Because the optimization computation requires many groundwater simulations, the ANN instead of traditional numerical simulation greatly reduces the computational burden. The high computing performance of both LP and ANN significantly increase the computational efficiency of entire model. This study examines four case studies to determine the supply efficiencies under different operation models. Unlike the high interaction between climate conditions and surface water resource, groundwater resources are more stable than the surface water resources for water supply. First, results indicate that adding an groundwater system whose supply productivity is just 8.67 % of the entire water requirement with a surface water supply first (SWSF) policy can significantly decrease the shortage index (SI) from 2.93 to 1.54. Second, the proposed model provides a more efficient conjunctive use policy than the SWSF policy, achieving further decrease from 1.54 to 1.13 or 0.79, depending on the groundwater rule curves. Finally, because of the usage of the hybrid framework, GA, LP, and ANN, the computational efficiency of proposed model is higher than other models with a purebred architecture or traditional groundwater numerical simulations. Therefore, the proposed model can be used to solve complicated large field problems. The proposed model is a valuable tool for conjunctive use operation planning. Copyright Springer Science+Business Media Dordrecht 2013
Keywords: Conjunctive use management; Genetic algorithm; Artificial neural network; Linear program and hybrid architecture (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-013-0418-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:27:y:2013:i:14:p:4731-4757
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-013-0418-9
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().