EconPapers    
Economics at your fingertips  
 

Efficient Identification of Unknown Groundwater Pollution Sources Using Linked Simulation-Optimization Incorporating Monitoring Location Impact Factor and Frequency Factor

Bithin Datta, Om Prakash (), Sean Campbell and Gerry Escalada

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2013, vol. 27, issue 14, 4959-4976

Abstract: This study aims to improve the accuracy of groundwater pollution source identification using concentration measurements from a heuristically designed optimal monitoring network. The designed network is constrained by the maximum number of permissible monitoring locations. The designed monitoring network improves the results of source identification by choosing monitoring locations that reduces the possibility of missing a pollution source, at the same time decreasing the degree of non uniqueness in the set of possible aquifer responses to subjected geo-chemical stresses. The proposed methodology combines the capability of Genetic Programming (GP), and linked simulation-optimization for recreating the flux history of the unknown conservative pollutant sources with limited number of spatiotemporal pollution concentration measurements. The GP models are trained using large number of simulated realizations of the pollutant plumes for varying input flux scenarios. A selected subset of GP models are used to compute the impact factor and frequency factor of pollutant source fluxes, at candidate monitoring locations, which in turn is used to find the best monitoring locations. The potential application of the developed methodology is demonstrated by evaluating its performance for an illustrative study area. These performance evaluation results show the efficiency in source identification when concentration measurements from the designed monitoring network are utilized. Copyright Springer Science+Business Media Dordrecht 2013

Keywords: Optimal monitoring network; Groundwater pollution; Pollution source identification; Genetic programming; Simulated annealing; Optimization (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-013-0451-8 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:27:y:2013:i:14:p:4959-4976

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-013-0451-8

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:27:y:2013:i:14:p:4959-4976