EconPapers    
Economics at your fingertips  
 

Least Economic Cost Regional Water Supply Planning – Optimising Infrastructure Investments and Demand Management for South East England’s 17.6 Million People

Silvia Padula, Julien Harou (), Lazaros Papageorgiou, Yiming Ji, Mohammad Ahmad and Nigel Hepworth

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2013, vol. 27, issue 15, 5017-5044

Abstract: This paper presents a deterministic capacity expansion optimisation model designed for large regional or national water supply systems. The annual model selects, sizes and schedules new options to meet predicted demands at minimum cost over a multi-year time horizon. Options include: supply-side schemes, demand management (water conservation) measures and bulk transfers. The problem is formulated as a mixed integer linear programming (MILP) optimisation model. Capital, operating, carbon, social and environmental costs of proposed discrete schemes are considered. User-defined annual water saving profiles for demand management schemes are allowed. Multiple water demand scenarios are considered simultaneously to ensure the supply–demand balance is preserved across high demand conditions and that variable costs are accurately assessed. A wide range of supplementary constraints are formulated to consider the interdependencies between schemes (pre-requisite, mutual exclusivity, etc.). A two-step optimisation scheme is introduced to prevent the infeasibilities that inevitably appear in real applications. The model was developed for and used by the ‘Water Resources in the South East’ stakeholder group to select which of the 316 available supply schemes (including imports) and 511 demand management options (considering 272 interdependencies) are to be activated to serve the inhabitants of South East of England. Selected schemes are scheduled and sized over a 25 year planning horizon. The model shows demand management options can play a significant role in the region’s water supply and should be considered alongside new supplies and regional transfers. Considering demand management schemes reduced overall total discounted economic costs by 10 % and removed two large reservoirs from the least-cost plan. This case-study optimisation model was built using a generalised data management software platform and solved using a mixed integer linear programme. Copyright The Author(s) 2013

Keywords: Water supply planning; Capacity expansion optimisation; Economic-engineering; Infrastructure planning; Demand management; South East England (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-013-0437-6 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:27:y:2013:i:15:p:5017-5044

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-013-0437-6

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:27:y:2013:i:15:p:5017-5044