Predicting Shallow Water Table Depth at Regional Scale: Optimizing Monitoring Network in Space and Time
Emanuele Barca,
Maria Calzolari (),
Giuseppe Passarella and
Fabrizio Ungaro
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2013, vol. 27, issue 15, 5190 pages
Abstract:
Shallow water table levels can be predicted using several approaches, either based on climatic records, on field evidences based on soil morphology, or on the outputs of physically based models. In this study, data from a monitoring network in a relevant agricultural area of Northern Italy (ca. 12,000 Km 2 ) were used to develop a data driven model for predicting water table depth in space and time from meteorological data and long-term water table characteristics and to optimize sampling density in space and time. Evolutionary Polynomial Regressions (EPR) were used to calibrate a predictive tool based on climatic data and on the records from 48 selected sites (N = 5,611). The model was validated against the water table depths observed in 15 independent sites (N = 1,739), resulting in a mean absolute error of 30.8 cm (R 2 = 0.61). The model was applied to the whole study area, using the geostatistical estimates of the average water table depth as input, to provide spatio-temporal maps of the water table depth. The impact of the degradation of data input in the temporal and spatial domain was then assessed following two approaches. In the first case, three different EPR models were calibrated based on 25 %, 50 % and 75 % of the available data, and the error indexes compared. In the second case, an increasing number of monitoring sites were removed from the initial data set, and the associated increased kriging standard deviation was assessed. Reducing the average sampling frequency from 1.5 per month to 1 every 40 days did not impact significantly on the prediction capability of the proposed model. Reducing the sampling frequency to 1 every 4 months resulted in a loss of accuracy >3 %, while removing more than half locations from the network, resulted in a global loss of information >15 %. Copyright Springer Science+Business Media Dordrecht 2013
Keywords: Water table; Evolutionary Polynomial Regressions; Simulated Annealing; Temporal degradation; Bootstrapping (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-013-0461-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:27:y:2013:i:15:p:5171-5190
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-013-0461-6
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().