Chaotic Evolutionary Algorithms for Multi-Reservoir Optimization
R. Arunkumar () and
V. Jothiprakash ()
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2013, vol. 27, issue 15, 5207-5222
Abstract:
The water sharing dispute in a multi-reservoir river basin forces the water resources planners to have an integrated operation of multi-reservoir system rather than considering them as a single reservoir system. Thus, optimizing the operations of a multi-reservoir system for an integrated operation is gaining importance, especially in India. Recently, evolutionary algorithms have been successfully applied for optimizing the multi-reservoir system operations. The evolutionary optimization algorithms start its search from a randomly generated initial population to attain the global optimal solution. However, simple evolutionary algorithms are slower in convergence and also results in sub-optimal solutions for complex problems with hardbound variables. Hence, in the present study, chaotic technique is introduced to generate the initial population and also in other search steps to enhance the performance of the evolutionary algorithms and applied for the optimization of a multi-reservoir system. The results are compared with that of a simple GA and DE algorithm. From the study, it is found that the chaotic algorithm with the general optimizer has produced the global optimal solution (optimal hydropower production in the present case) within lesser generations. This shows that coupling the chaotic algorithm with evolutionary algorithm will enrich the search technique by having better initial population and also converges quickly. Further, the performances of the developed policies are evaluated for longer run using a simulation model to assess the irrigation deficits. The simulation results show that the model satisfactorily meets the irrigation demand in most of the time periods and the deficit is very less. Copyright Springer Science+Business Media Dordrecht 2013
Keywords: Chaos; Evolutionary algorithms; Multi-reservoir system; Optimization; Hydropower production (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-013-0463-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:27:y:2013:i:15:p:5207-5222
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-013-0463-4
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().