EconPapers    
Economics at your fingertips  
 

Water Resources Sustainability Indicator: Application of the Watershed Characteristics Approach

Heidi Peterson (), John Nieber (), Roman Kanivetsky () and Boris Shmagin ()

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2013, vol. 27, issue 5, 1234 pages

Abstract: The quantification of the renewable flux (i.e. sustainable limit) of the hydrologic system is the prerequisite for transitioning from unsustainable to sustainable water resources management. The application of the Watershed Characteristics Approach to estimate the renewable flux of the hydrologic system was demonstrated using Minnesota’s (USA) Twin Cities Metropolitan Area (TCMA). The methodology quantified the relationships between landscape properties and water balance characteristics, resulting in the development of functioning hierarchical hydrogeological units with corresponding recharge rates. This renewable flux is a key quantitative characteristic for the assessment of a sustainability indicator. The key indicator of sustainable water use is the ratio of the renewable capacity of the hydrologic system to the water use by humans and the environment. By incorporating water use estimates for the TCMA relative to the calculated recharge rates, sustainability indicators for groundwater and total flux were calculated for the metropolitan area. As far back as the 1890s, declines in TCMA groundwater levels have been observed, which correspond to the unsustainable groundwater extraction estimates identified in the results of this study. The non-stationary characteristics of urban watersheds influenced by ongoing land use/land cover changes as illustrated in this paper, emphasizes the need for conservative hydrologic planning to achieve sustainable water management. This approach can also be applied to other metropolitan areas as a hydrologic tool for decision-makers to design sustainable water policy and prevent the over-extraction of the water flowing through the hydrologic system. Copyright Springer Science+Business Media Dordrecht 2013

Keywords: Sustainability indicator; Water use; Renewable flux; Hydrologic response units; Sustainable water management (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-012-0232-9 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:27:y:2013:i:5:p:1221-1234

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-012-0232-9

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:27:y:2013:i:5:p:1221-1234