EconPapers    
Economics at your fingertips  
 

Identification of the SCS-CN Parameter Spatial Distribution Using Rainfall-Runoff Data in Heterogeneous Watersheds

Konstantinos Soulis () and John Valiantzas

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2013, vol. 27, issue 6, 1737-1749

Abstract: The Soil Conservation Service Curve Number (SCS-CN) method is widely used for predicting direct runoff volume for a given rainfall event. However, previous results indicated that when the CN value is determined from measured rainfall-runoff data in a natural watershed it is not possible to attribute a single CN value to the watershed, but actually the calculated CN values vary systematically with the rainfall depth. In a previous study, the authors investigated the hypothesis that the observed correlation between the calculated CN value and the rainfall depth in a watershed reflects the effect of the inevitable presence of soil-cover complex spatial variability along watersheds. In this study, a method to determine SCS-CN parameter values from rainfall-runoff data in heterogeneous watersheds is proposed. This method exploits the observed correlation between the calculated CN values and the rainfall depths in order to identify the spatial distribution of CN values along the watershed taking in to account the specific characteristics of the watershed. The proposed method utilizes the available rainfall-runoff data, remote sensing data and GIS techniques in order to provide information on spatial watershed characteristics that drive hydrological behavior. Furthermore, it allows the estimation of CN values for specific soil-land cover complexes in more complex watersheds. The proposed method was tested in a small experimental watershed in Greece. The watershed is equipped with a dense hydro-meteorological network, which together with a detailed land cover and soil survey using remote sensing and GIS techniques provided the detailed data required for this analysis. Copyright Springer Science+Business Media B.V. 2013

Keywords: SCS-CN; Runoff; CN spatial distribution; CN determination; Heterogeneous watersheds (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-012-0082-5 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:27:y:2013:i:6:p:1737-1749

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-012-0082-5

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:27:y:2013:i:6:p:1737-1749