Generalized Explicit Models for Estimation of Wetting Front Length and Potential Recharge
Shakir Ali (),
Narayan Ghosh (),
Ranvir Singh () and
B. Sethy ()
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2013, vol. 27, issue 7, 2429-2445
Abstract:
Determination of length of advancement of wetting front is prerequisite for estimation of potential recharge. The advancement of wetting front is a time varying function governs by depth of ponding and suction head. Use of the Green-Ampt (GA) model for determining time varying length of wetting front involves a trial and error iterative method and hence, a tedious procedure. Replacing the logarithmic term of the GA model by sequential segmental second order polynomial, generalized algebraic equation based models for estimating time varying length of advancement of wetting front and potential recharge rates have been developed. Unlike following a trial and error method as involve in the GA model, the proposed model provides an explicit equation with no restriction to infiltration time period and depth of ponding. The universal values of the models coefficients for different ranges of $$ {{{{L_f}}} \left/ {{\left( {H+{\psi_f}} \right)}} \right.} $$ [L f =length of advance of wetting front, H=depth of ponding, and ψ f =suction head at the wetting front] have been determined with the help of the GA model by numerical experiments. Validity of the model has also been tested with the published laboratory experimental data. Analyzed results showed, the proposed models have similar responses as that of the GA model within a maximum relative error of 0.5 % for length of wetting front and 1.2 % for potential recharge estimate, and the corresponding percent bias has been found 0.20 % and 0.12 %, respectively. The proposed models can successfully be used as alternate to the GA model to design artificial groundwater recharge structures, irrigation systems and resolving solute transport problems. Copyright Springer Science+Business Media Dordrecht 2013
Keywords: Green-Ampt; Explicit equation; Potential recharge; Wetting front (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-013-0295-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:27:y:2013:i:7:p:2429-2445
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-013-0295-2
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().