EconPapers    
Economics at your fingertips  
 

A Novel Multi-Objective Shuffled Complex Differential Evolution Algorithm with Application to Hydrological Model Parameter Optimization

Jun Guo (), Jianzhong Zhou (), Qiang Zou (), Yi Liu () and Lixiang Song ()

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2013, vol. 27, issue 8, 2923-2946

Abstract: Practice experience suggests that the traditional calibration of hydrological models with single objective cannot properly measure all of the behaviors of the hydrological system. To circumvent this problem, in recent years, a lot of studies have looked into calibration of hydrological models with multi-objective. In this paper, we propose a novel multi-objective evolution algorithm entitled multi-objective shuffled complex differential evolution (MOSCDE) algorithm, which is an extension of the famous single objective algorithm, shuffled complex evolution (SCE-UA) algorithm, to the multi-objective framework. This new proposed algorithm replaces the simplex search used in SCE-UA with the differential evolution (DE) algorithm and can more thoroughly utilize the information of the individuals in the evolutionary population and improve the search ability of the algorithm. Meanwhile, the Cauchy mutation (CM) operator is employed to prevent the algorithm from falling into the local optimal region of the feasible space. Moreover, two types of archive sets are employed to further improve the performance of the algorithm. The efficacy of the MOSCDE algorithm is first tested on five benchmark problems. After achieving satisfactory performance on the test problems, the MOSCDE is applied to multi-objective parameter optimization of a hydrological model for daily runoff forecasting. The results show that the MOSCDE algorithm can be a viable alternative for multi-objective parameter optimization of hydrological model. Copyright Springer Science+Business Media Dordrecht 2013

Keywords: Multi-objective optimization; Differential evolution; Hydrological model; Model calibration; Parameter optimization; Runoff forecasting (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-013-0324-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:27:y:2013:i:8:p:2923-2946

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-013-0324-1

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:27:y:2013:i:8:p:2923-2946