Improving Rainfall Forecasting Efficiency Using Modified Adaptive Neuro-Fuzzy Inference System (MANFIS)
Seyed Akrami (),
Ahmed El-Shafie and
Othman Jaafar
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2013, vol. 27, issue 9, 3507-3523
Abstract:
Rainfall is one of the most complicated effective hydrologic processes in runoff prediction and water management. The adaptive neuro-fuzzy inference system (ANFIS) has been widely used for modeling different kinds of nonlinear systems including rainfall forecasting. Adaptive Neuro-Fuzzy Inference Systems (ANFIS) combines the capabilities of Artificial Neural Networks (ANN) and Fuzzy Inference Systems (FIS) to solve different kinds of problems, especially efficient in rainfall prediction. This paper after reconsidering conventional ANFIS architecture brings up a modified ANFlS (MANFlS) structure developed with attention to making ANFIS technique more efficient regarding to Root Mean Square Error (RMSE), Correlation Coefficient (R 2 ), Root Mean Absolute Error (RMAE), Signal to Noise Ratio (SNR) and computing epoch. The modified ANFIS (MANFIS) architecture is simpler than conventional ANFIS with nearly the same performance for modeling nonlinear systems. In this study, two scenarios were introduced; in the first scenario, monthly rainfall was used solely as an input in different time delays from the time (t) to the time (t-4) to conventional ANFIS, second scenario used the modified ANFIS to improve the rainfall forecasting efficiency. The result showed that the model based Modified ANFIS performed higher rainfall forecasting accuracy; low errors and lower computational complexity (total number of fitting parameters and convergence epochs) compared with the conventional ANFIS model. Copyright Springer Science+Business Media Dordrecht 2013
Keywords: Adaptive neuro-fuzzy Inference systems (ANFIS); Fuzzy rules; Rainfall prediction; Modified ANFIS; Fitting parameters; Converges of iterations (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-013-0361-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:27:y:2013:i:9:p:3507-3523
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-013-0361-9
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().