A Distributed Hydrological Model Driven by Multi-Source Spatial Data and Its Application in the Ili River Basin of Central Asia
Mingyong Cai,
Shengtian Yang,
Hongjuan Zeng,
Changsen Zhao () and
Shudong Wang
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2014, vol. 28, issue 10, 2866 pages
Abstract:
Hydrological simulation in ungauged regions is a popular topic in water resource and environmental research, and is also an important part of the international research initiative Predictions in Ungauged Basins (PUB). In this study, a multi-spatial data-based DTVGM (MS-DTVGM), combining multi-source spatial data (MS-spatial data) with the Distributed Time-Variant Gain Model (DTVGM), was built in order to reduce dependence on conventional observation, and was applied to the Ili River basin where traditional data sets are scarce. Because it utilizes MS-spatial data to measure precipitation, potential evapotranspiration, air temperature, vegetation parameters, and soil parameters, the model is driven purely by data from common platforms, thus overcoming the disadvantage of the large amounts of data typically required for distributed hydrological models. The inputs and simulation results were calibrated and validated using station or field observations. The results indicate that: 1) the MS-DTVGM is feasible in the Ili River basin; all model inputs can be acquired from multi-source spatial data and the key parameters are accurate; 2) the MS-DTVGM has good performance on a monthly time scale, and its simulation results can be used for a longer time-scale water resource analysis; and (3) daily runoff generation correlated strongly with snowmelt, the R 2 is about 0.69 indicating that the latter is an important contributor to water resources and suggesting that a snowmelt module is indispensable this area. The potential of distributed models for hydrological simulation in data-scarce regions using MS-spatial data was clearly demonstrated. Copyright Springer Science+Business Media Dordrecht 2014
Keywords: Multi-spatial data; Remote sensing; Ungauged regions; MS-DTVGM; Hydrological modeling (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-014-0641-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:28:y:2014:i:10:p:2851-2866
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-014-0641-z
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().