EconPapers    
Economics at your fingertips  
 

Development of an Optimal Reservoir Operation Scheme Using Extended Evolutionary Computing Algorithms Based on Conflict Resolution Approach: A Case Study

Mohammad Karamouz (), Sara Nazif (), Mohammad Sherafat () and Zahra Zahmatkesh ()

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2014, vol. 28, issue 11, 3539-3554

Abstract: Optimal reservoir operation and water allocation are critical issues in sustainable water resource management due to increasing water demand. Multiplicity of stockholders with different objectives and utilities makes reservoir operation a complicated problem with a variety of constraints and objectives to be considered. In this case, the conflict resolution models can be efficiently used to determine the optimal water allocation scheme considering the utility and relative authority of different stakeholders. In this study, the Nash product is used for formulation of the objective function of a reservoir water allocation model. The Analytic Hierarchy Process (AHP) is used to determine the importance of each stockholder in bargaining for water. The Particle Swarm Optimization algorithm (PSO) and the Imperialism Competitive Algorithm (ICA) are applied to solve the proposed optimization model. System performance indices including reliability, resiliency and vulnerability are used to evaluate the performance of optimization algorithms. The simplest and most often-used reservoir policy (Standard Operating Policy, SOP) is also used in order to evaluate the performance of the proposed models. The proposed model is applied to the Karkheh River-Reservoir system located in south western part of Iran as a case study. Results show the significance of the application of conflict resolution models, such as the Nash theory and proposed optimization algorithms, for water allocation in the regional scale especially in complicated water supply systems. Copyright Springer Science+Business Media Dordrecht 2014

Keywords: Water allocation optimization; Conflict resolution; Nash bargaining theory; Particle Swarm Optimization; Imperialism Competitive Algorithm (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-014-0686-z (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:28:y:2014:i:11:p:3539-3554

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-014-0686-z

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:28:y:2014:i:11:p:3539-3554