Spatio-Temporal Changes in Potential Evaporation Based on Entropy Across the Wei River Basin
Shengzhi Huang (),
Jianxia Chang,
Qiang Huang,
Yimin Wang and
Yutong Chen
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2014, vol. 28, issue 13, 4599-4613
Abstract:
The distribution of potential evaporation is highly unstable due to complex human activities and climate changes. Therefore, it is of great significance for further understanding hydrological cycle to estimate potential evaporation distribution. Reasonable regionalization of potential evaporation will help to improve the efficiency of irrigation and increase the ability of drought relief, which is of great importance to irrigation planning and management. Hence, the spatio-temporal changes in potential evaporation distribution at monthly and annual scales are investigated based on the modified Mann-Kendall trend test method and the entropy theory in the Wei River Basin. A nonparametric method as an attractive alternative to empirical and parametric approaches is proposed to calculate the univariate and bivariate probability distribution of potential evaporation. The directional information transfer index (DITI) is employed to estimate the similarity among the meteorological stations, and the k-means cluster analysis is used to classify the meteorological stations into several distribution zones with distinct features. Based on the monthly potential evaporation from 1960 to 2008 at 21 meteorological stations, the basin is ultimately classified into 8 zones with their own distinct spatio-temporal distribution features. In view of the distinct spatio-temporal distribution features, the DITI-based model combined with the nonparametric probability estimation method and the k-means cluster analysis offers a more precise classification of potential evaporation distribution zones. Copyright Springer Science+Business Media Dordrecht 2014
Keywords: Potential evaporation distribution zone; Entropy; The modified Mann-Kendall trend test method; The K-means cluster analysis; The Wei River Basin (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-014-0760-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:28:y:2014:i:13:p:4599-4613
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-014-0760-6
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().