EconPapers    
Economics at your fingertips  
 

Intermittent Streamflow Forecasting and Extreme Event Modelling using Wavelet based Artificial Neural Networks

Jaydip Makwana and Mukesh Tiwari ()

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2014, vol. 28, issue 13, 4857-4873

Abstract: Forecasting of intermittent stream flow is necessary for water resource planning and management at catchment scale. Forecasting of extreme events and events outside the range of training data used for artificial neural network (ANN) model development has been a major bottleneck in their generalization capabilities till date. Despite of several studies using wavelet analysis in water resource modelling, no study has yet been conducted to explore capabilities of hybrid ANN modelling techniques for extreme events outside the training range. In this study a wavelet based ANN model (WANN) is proposed for intermittent streamflow forecasting and extreme event modelling. This study is carried out in a watershed in semi arid middle region of Gujarat, India. 6 years of hydro-climatic data are used in this study. 4 years of data are used for model training, 1 year for cross-validation and remaining 1 year data are used to evaluate the effectiveness of the WANN model. Two different approaches of data arrangement are considered in this study, in one approach testing data are within the range of training dataset, whereas in another approach testing data are outside the training dataset range. Performance of four different training algorithms and different types of wavelet functions are also evaluated for WANN model development. In this study it is found that WANN model performed significantly better than standard ANN models. It is observed in this study that different wavelet functions have different role in modelling complexities of normal and extreme events. WANN model simulated peak values very well and it shows that WANN model has the potential to be applied successfully for intermittent streamflow forecasting even for the data outside the training range and for extreme events. Copyright Springer Science+Business Media Dordrecht 2014

Keywords: Intermittent streamflow; wavelet analysis; artificial neural networks; extreme events; Semi-arid region; Gujarat (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-014-0781-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:28:y:2014:i:13:p:4857-4873

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-014-0781-1

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:28:y:2014:i:13:p:4857-4873