River Discharges Forecasting In Northern Iraq Using Different ANN Techniques
Taymoor Awchi ()
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2014, vol. 28, issue 3, 814 pages
Abstract:
The Upper and Lower Zab Rivers are two of main and most important tributaries of Tigris River in Northern Iraq region. They supply Tigris River with more than 40 % of its yield. The forecasting of flows for these rivers is very important in operation of the existing Dokan Dam on the Lower Zab River and the proposed Bakhma Dam on the Upper Zab River for flood mitigation and also in drought periods. Three types of Artificial Neural Networks (ANNs) are investigated and evaluated for flow forecasting of both rivers. The ANN techniques are the feedforward neural networks (FFNN), generalized regression neural networks (GRNN), and the radial basis function neural networks (RBF). The networks’ performance varied with different cases involved in the study; however, the FFNN was almost better than other networks. The effect of including a time index within the inputs of the networks is investigated. In addition, the ANNs’ performance is investigated in forecasting the high and low peaks and in forecasting river flows using the data of the other river. Copyright Springer Science+Business Media Dordrecht 2014
Keywords: Forecasting; ANNs; River flow; Peak flow; Zab River (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-014-0516-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:28:y:2014:i:3:p:801-814
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-014-0516-3
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().