EconPapers    
Economics at your fingertips  
 

Impact of Climate Change on the Hydrology of Upper Tiber River Basin Using Bias Corrected Regional Climate Model

B. Fiseha (), S. Setegn, A. Melesse, E. Volpi and A. Fiori

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2014, vol. 28, issue 5, 1327-1343

Abstract: The use of regional climate model (RCM) outputs has been getting due attention in most European River basins because of the availability of large number of the models and modelling institutes in the continent; and the relative robustness the models to represent local climate. This paper presents the hydrological responses to climate change in the Upper Tiber River basin (Central Italy) using bias corrected daily regional climate model outputs. The hydrological analysis include both control (1961–1990) and future (2071–2100) climate scenarios. Three RCMs (RegCM, RCAO, and PROMES) that were forced by the same lateral boundary condition under A2 and B2 emission scenarios were used in this study. The projected climate variables from bias corrected models have shown that the precipitation and temperature tends to decrease and increase in summer season, respectively. The impact of climate change on the hydrology of the river basin was predicted using physically based Soil and Water Assessment Tool (SWAT). The SWAT model was first calibrated and validated using observed datasets at the sub-basin outlet. A total of six simulations were performed under each scenario and RCM combinations. The simulated result indicated that there is a significant annual and seasonal change in the hydrological water balance components. The annual water balance of the study area showed a decrease in surface runoff, aquifer recharge and total basin water yield under A2 scenario for RegCM and RCAO RCMs and an increase in PROMES RCM under B2 scenario. The overall hydrological behaviour of the basin indicated that there will be a reduction of water yield in the basin due to projected changes in temperature and precipitation. The changes in all other hydrological components are in agreement with the change in projected precipitation and temperature. Copyright Springer Science+Business Media Dordrecht 2014

Keywords: RCM; Bias correction; Climate change; Hydrological modeling; SWAT; Tiber River basin (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-014-0546-x (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:28:y:2014:i:5:p:1327-1343

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-014-0546-x

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:28:y:2014:i:5:p:1327-1343