EconPapers    
Economics at your fingertips  
 

Identifying Explicit Formulation of Operating Rules for Multi-Reservoir Systems Using Genetic Programming

Liping Li, Pan Liu (), David Rheinheimer, Chao Deng and Yanlai Zhou

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2014, vol. 28, issue 6, 1545-1565

Abstract: Operating rules have been widely used to handle the inflows uncertainty for reservoir long-term operations. Such rules are often expressed in implicit formulations not easily used by other operators and/or reservoirs directly. This study presented genetic programming (GP) to derive the explicit nonlinear formulation of operating rules for multi-reservoir systems. Steps in the proposed method include: (1) determining the optimal operation trajectory of the multi-reservoir system using the dynamic programming to solve a deterministic long-term operation model, (2) selecting the input variables of operating rules using GP based on the optimal operation trajectory, (3) identifying the formulation of operating rules using GP again to fit the optimal operation trajectory, (4) refining the key parameters of operating rules using the parameterization-simulation-optimization method. The method was applied to multi-reservoir system in China that includes the Three Gorges cascade hydropower reservoirs (Three Gorges and Gezhouba reservoirs) and the Qing River cascade hydropower reservoirs (Shuibuya, Geheyan and Gaobazhou reservoirs). The inflow and storage energy terms were selected as input variables for total output of the aggregated reservoir and for decomposition. It was shown that power energy term could more effectively reflect the operating rules than water quantity for the hydropower systems; the derived operating rules were easier to implement for practical use and more efficient and reliable than the conventional operating rule curves and artificial neural network (ANN) rules, increasing both average annual hydropower generation and generation assurance rate, indicating that the proposed GP formulation had potential for improving the operating rules of multi-reservoir system. Copyright Springer Science+Business Media Dordrecht 2014

Keywords: Reservoir operation; Genetic programming; Operating rules; Aggregation-decomposition (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-014-0563-9 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:28:y:2014:i:6:p:1545-1565

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-014-0563-9

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:28:y:2014:i:6:p:1545-1565