EconPapers    
Economics at your fingertips  
 

Modeling of Sediment Yield Prediction Using M5 Model Tree Algorithm and Wavelet Regression

Manish Goyal ()

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2014, vol. 28, issue 7, 2003 pages

Abstract: The forecast of the sediment yield generated within a watershed is an important input in the water resources planning and management. The methods for the estimation of sediment yield based on the properties of flow and sediment have limitations attributed to the simplification of important parameters and boundary conditions. Under such circumstances, soft computing approaches have proven to be an efficient tool in modelling the sediment yield. The focus of present study is to deal with the development of decision tree based M5 Model Tree and wavelet regression models for modeling sediment yield in Nagwa watershed in India. A comparison is also performed with the artificial neural network (ANN) model for streamflow forecasting. The root mean square errors (RMSE), Nash-Sutcliff efficiency index (N-S Index), and correlation coefficient (R) statistics are used for the statistical criteria. A comparative evaluation of the performance of M5 Model Tree and wavelet regression versus ANN clearly shows that M5 Model Tree and wavelet regression can prove more useful than ANN models in estimation of sediment yield. Further, M5 model tree offers explicit expressions for use by design engineers. Copyright Springer Science+Business Media Dordrecht 2014

Keywords: Streamflow; M5 model tree; Discrete wavelet transform; Regression; Forecast (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-014-0590-6 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:28:y:2014:i:7:p:1991-2003

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-014-0590-6

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:28:y:2014:i:7:p:1991-2003