EconPapers    
Economics at your fingertips  
 

Optimization of Calibration Parameters for an Event Based Watershed Model Using Genetic Algorithm

T. Reshma (), K. Reddy, Deva Pratap, Mehdi Ahmedi () and V. Agilan

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2015, vol. 29, issue 13, 4589-4606

Abstract: In this study, an event based rainfall runoff model has been integrated with Single objective Genetic Algorithm (SGA) and Multi-objective Genetic Algorithm (MGA) for optimization of calibration parameters (i.e. saturated hydraulic conductivity (K s ), average capillary suction at the wetting front (S av ), initial water content (θ i ) and saturated water content (θ s )). The integrated model has been applied for Harsul watershed located in India, and Walnut Gulch experimental watershed located in Arizona, USA. Nash-Sutcliffe Efficiency (NSE) and correlation coefficient (r) between observed and simulated runoff have been used to test the performance of runoff models. The SGA and MGA integrated runoff model performance is also compared with the performance of the Hydrologic Engineering Center- Hydrologic Modeling System (HEC_HMS) model. Range of NSE values for study watersheds with integrated MGA, integrated SGA, HEC_HMS and for the event based rainfall runoff models are [−0.61 to 0.79], [−0.5 to 0.74], [−3.37 to 0.82] and [−5.78 to 0.53] respectively. Range of correlation coefficient values for study watersheds with integrated MGA, integrated SGA, HEC_HMS and for the event based rainfall runoff models are [0.18 to 0.95], [−0.55 to 0.90], [−0.18 to 0.97] and [−0.12 to 0.86] respectively. From the results, it is evident that the integrated model is giving the best calibrated parameters as compared to manual calibration methods. Genetic Algorithm (GA) integrated runoff models can be used to simulate the flow parameters of data sparse watersheds. Copyright Springer Science+Business Media Dordrecht 2015

Keywords: Genetic algorithm; Optimization; Rainfall-runoff model; Watershed (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-015-1077-9 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:29:y:2015:i:13:p:4589-4606

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-015-1077-9

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:29:y:2015:i:13:p:4589-4606