Application of the Improved City Blueprint Framework in 45 Municipalities and Regions
Steven Koop and
Cornelis Leeuwen ()
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2015, vol. 29, issue 13, 4629-4647
Abstract:
Rapid urbanization, water pollution, climate change and inadequate maintenance of water and wastewater infrastructures in cities may lead to flooding, water scarcity, adverse health effects, and rehabilitation costs that may overwhelm the resilience of cities. Furthermore, Integrated Water Resources Management (IWRM) is hindered by water governance gaps. We have analyzed IWRM in 45 municipalities and regions divided over 27 countries using the improved City Blueprint® Framework (CBF). The CBF incorporates solely performance-oriented indicators that more accurately measure the city’s own efforts and performances to improve its IWRM. We have also analyzed the trends and pressures (on which the city’s IWRM has a negligible influence). The Trends and Pressure Framework (TPF) creates awareness of the most stressing topics that either hamper or, on the contrary, pose opportunity windows for IWRM. The improved Blue City Index (BCI*) and the Trends and Pressures Index (TPI; the arithmetic mean of all TPF indicators) have been compared with other city descriptors. The BCI* and TPI showed a significant and negative Pearson correlation (r = −0.83). This implies that cities with pressing needs to improve their IWRM also face the highest environmental, financial and/or social limitations. The BCI* and TPI correlate significantly with the ND-GAIN climate readiness index (r = 0.86; r = −0.94), the environmental awareness index (r = 0.85; r = −0.85), the European green city index (r = 0.86; r = −0.85) and various World Bank governance indicators. Based on a hierarchical clustering of the 45 municipalities and regions, 5 different levels of sustainability of urban IWRM could be distinguished, i.e., (1) cities lacking basic water services, (2) wasteful cities, (3) water efficient cities, (4) resource efficient and adaptive cities, and (5) water wise cities. This categorization, as well as the CBF and TPF are heuristic approaches to speed up the transition towards water wise cities. Copyright The Author(s) 2015
Keywords: Water management; Climate adaptation; Sustainability indicators; Blue City Index®; Waste treatment (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-015-1079-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:29:y:2015:i:13:p:4629-4647
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-015-1079-7
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().