EconPapers    
Economics at your fingertips  
 

Comparison Between Two Hydrodynamic Models for Flooding Simulations at River Lima Basin

José Pinho (), Rui Ferreira, Luís Vieira and Dirk Schwanenberg

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2015, vol. 29, issue 2, 444 pages

Abstract: According to EU flood risks directive, flood hazard maps should include information on hydraulic characteristics of vulnerable locations, i.e. the inundated areas, water depths and velocities. These features can be assessed by the use of advanced hydraulic modelling tools which are presented in this paper based on a case study in the river Lima basin, Portugal. This river includes several flood-prone areas. Ponte Lima town is one of the places of higher flood risk. The upstream dams can lower the flood risks if part of its storage capacity is allocated for mitigating flood events. However, proper management of dam releases and the evaluation of downstream river flows should be considered for preventing flood damages. A hydrological and a one-dimensional hydrodynamic model were implemented, and at a particular flood-prone town, inundation was assessed using a two-dimensional model. The hydrological model is based on the well known Sacramento model. For this purpose, two different modelling implementations were analysed: a model based on a finite element mesh and a model based on rectangular grids. The computational performance of the two modelling implementations is evaluated. Historical flood events were used for model calibration serving as a basis for the establishment of different potential flood scenarios. Intense precipitation events in the river’s basin and operational dam releases are determinant for the occurrence of floods at vulnerable downstream locations. The inundation model based on the unstructured mesh reveals to be more computationally efficient if high spatial resolution is required. A new combination of software tools for floods simulation is presented including an efficient alternative for simulation of 2-D inundation using a finite element mesh instead of a grid. Copyright Springer Science+Business Media Dordrecht 2015

Keywords: Hydroinformatics tools; River flood forecasting; Hydrodynamic model; River water management (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-014-0878-6 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:29:y:2015:i:2:p:431-444

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-014-0878-6

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:29:y:2015:i:2:p:431-444