MSANOS: Data-Driven, Multi-Approach Software for Optimal Redesign of Environmental Monitoring Networks
Emanuele Barca (),
Giuseppe Passarella,
Michele Vurro and
Alberto Morea
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2015, vol. 29, issue 2, 619-644
Abstract:
Within the recent EU Water Framework Directive and the modification introduced into national water-related legislation, monitoring assumes great importance in the frame of territorial managerial activities. Recently, a number of public environmental agencies have invested resources in planning improvements to existing monitoring networks. In effect, many reasons justify having a monitoring network that is optimally arranged in the territory of interest. In fact, modest or sparse coverage of the monitored area or redundancies and clustering of monitoring locations often make it impossible to provide the manager with sufficient knowledge for decision-making processes. The above mentioned are typical cases requiring optimal redesign of the whole network; fortunately, using appropriate stochastic or deterministic methods, it is possible to rearrange the existing network by eliminating, adding, or moving monitoring locations and producing the optimal arrangement with regard to specific managerial objectives. This paper describes a new software application, MSANOS, containing some spatial optimization methods selected as the most effective among those reported in literature. In the following, it is shown that MSANOS is actually able to carry out a complete redesign of an existing monitoring network in either the addition or the reduction sense. Both model-based and design-based objective functions have been embedded in the software with the option of choosing, case by case, the most suitable with regard to the available information and the managerial optimization objectives. Finally, two applications for testing the goodness of an existing monitoring network and the optimal reduction of an existing groundwater-level monitoring network of the aquifer of Tavoliere located in Apulia (South Italy), constrained to limit the information loss, are presented. Copyright Springer Science+Business Media Dordrecht 2015
Keywords: Optimal monitoring network redesign; Optimization methods; Spatial simulated annealing; Jackknife; Greedy deletion (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-014-0859-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:29:y:2015:i:2:p:619-644
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-014-0859-9
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().