Predictive Temporal Data-Mining Approach for Evolving Knowledge Based Reservoir Operation Rules
S. Mohan () and
N. Ramsundram
Additional contact information
S. Mohan: Environmental and Water Resources Engineering, Department of Civil Engineering, Indian Institute of Technology Madras
N. Ramsundram: Environmental and Water Resources Engineering, Department of Civil Engineering, Indian Institute of Technology Madras
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2016, vol. 30, issue 10, No 1, 3315-3330
Abstract:
Abstract The persistent problem in reservoir operation is that the derived optimal releases fail to incorporate the decision maker or reservoir operators’ knowledge into reservoir operation models. The reservoir operators’ knowledge is specific to that particular reservoir and incorporating such an experienced knowledge will help to derive field reality based operation rules. The available historical reservoir operation databases are the representative samples of reservoir operators’ knowledge or experience. Thus, an attempt has been made that deals with the development of a methodological framework to recover or explore the historical reservoir operation database to derive the reservoir operators’ knowledge as operational rules. The developed methodological framework utilizes the strength and capability of recently developed predictive datamining algorithms to recover the knowledge from large historical database. Predictive data-mining algorithms such as a) classifier: Artificial Neural Network (ANN), and b) regression: Support Vector Regression (SVR) have been used for single reservoir operation data-mining (SROD) modelling framework to explore the temporal dependence between different variables of reservoir operation. The rules of operation or knowledge learned from the training database have been used as guiding rules for predicting the future reservoir operators’ decision on operating the reservoir for the given condition on the inflow, initial storage, and demand requirements. The developed SROD model was found to be efficient in exploring the hidden relationships that exist in a single reservoir system.
Keywords: Reservoir operation; Data-mining; ANN; SVR (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-016-1351-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:30:y:2016:i:10:d:10.1007_s11269-016-1351-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-016-1351-5
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().