Multiobjective Genetic Optimization Approach to Identify Pipe Segment Replacements and Inline Storages to Reduce Sanitary Sewer Overflows
Olufunso Ogidan () and
Marcio Giacomoni
Additional contact information
Olufunso Ogidan: University of Texas at San Antonio
Marcio Giacomoni: University of Texas at San Antonio
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2016, vol. 30, issue 11, No 4, 3707-3722
Abstract:
Abstract Sanitary sewer overflows (SSOs) is the unintentional discharge of untreated sewage from the sanitary sewer system and pose serious risk to public health and to the environment. Rehabilitation plans to reduce SSOs involve increasing conveyance capacity and shaving peak flow using detention storages. Identifying the best location for rehabilitating the sanitary sewer network is a difficult task because of the great length of sanitary sewer systems. This study utilized single and multiobjective genetic algorithms (GAs) to design rehabilitation strategies for SSOs reduction in an existing sewer network. The Nondominated Sorting Genetic Algorithm II was linked to the EPA-SWMM to generate non-dominated sets of solutions that characterizes the tradeoffs between reduction in number of SSOs and cost (Case I), and the tradeoff between of volume of SSOs and cost (Case II). The results show that, when maximizing the reduction of number SSOs, the algorithm target first regions of the network with higher density of SSOs. When maximizing the reduction of volume of SSOs, the solutions prioritize the nodes with the largest overflow volumes. The tested approach provides a range of options to decision makers that seek to reduce or eliminate SSOs in an existing sanitary sewer system.
Keywords: Sanitary sewer rehabilitation; Multiobjective optimization; Sanitary sewer overflow; Genetic algorithm (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-016-1373-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:30:y:2016:i:11:d:10.1007_s11269-016-1373-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-016-1373-z
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().