Assessing Groundwater Geospatial Variation Using Microgravity Investigation in the Arid Riyadh Metropolitan Area, Saudi Arabia: a Case Study
Mohamed Alfy (),
Ibrahim ElSebaie,
Ayman Aguib,
Ahmed Mohamed and
Qassem Tarawneh
Additional contact information
Mohamed Alfy: King Saud University
Ibrahim ElSebaie: King Saud University
Ayman Aguib: King Saud University
Ahmed Mohamed: Geomatics USA, LLC
Qassem Tarawneh: King Saud University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2016, vol. 30, issue 11, No 11, 3845-3860
Abstract:
Abstract A combination of relative microgravity measurements at ground surface, and depth to water and water table measurements from adjacent wells were used to estimate geospatial variation of groundwater. A highly accurate portable Grav-Map gravimeter was used for gravimetric measurements at locations nearby a 42 well water table monitoring program. To efficiently correlate the two data sets, wells were clustered into five groups by geological unit and water saturation. Microgravity data was processed, interpreted, and correlated with both the depths to groundwater and the water table levels. Regression analyses revealed a strong negative correlation for microgravity and depth to groundwater in all five clusters; correlation coefficients varied between 0.70 and 0.97, and measured 0.78 over the entire study area. Microgravity values increased as groundwater depth decreased, likely because rising groundwater fills voids and fractures within soil and rocks, increasing rock density and therefore relative gravity. To validate the correlation, we superimposed a map of depths to water on the first derivative of microgravity measurements. The shallowest groundwater depths were positively related to the zero first derivatives, having intersection areas within a 75 % significance interval. Negative first derivatives covered the rest of the study area, with relative gravity decreasing with increasing groundwater depth. This technique can precisely and efficiently determine changes in subsurface geology and geospatial changes in depths to the groundwater table. Distances between microgravity stations should be small, to better detect small changes in gravity values, reflecting density contrasts underground.
Keywords: Geospatial groundwater variation; Relative microgravity; Waterlogging; Grav-map (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-016-1392-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:30:y:2016:i:11:d:10.1007_s11269-016-1392-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-016-1392-9
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().