Optimized River Stream-Flow Forecasting Model Utilizing High-Order Response Surface Method
Behrooz Keshtegar,
Mohammed Falah Allawi,
Haitham Abdulmohsin Afan () and
Ahmed El-Shafie
Additional contact information
Behrooz Keshtegar: University of Zabol
Mohammed Falah Allawi: Universiti Kebangsaan Malaysia
Haitham Abdulmohsin Afan: Universiti Kebangsaan Malaysia
Ahmed El-Shafie: University Malaya
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2016, vol. 30, issue 11, No 14, 3899-3914
Abstract:
Abstract Accurate and reliable stream-flow forecasting has a key role in water resources planning and management. Most recently, soft computing approaches have become progressively prevalent in modelling hydrological variables and most specifically stream-flows. This is due to their ability to capture the non-linearity and non-stationarity characteristics of the hydrological variables with minimum information requirements. Despite this, they present several challenges in the modelling architecture, as there is a need to establish a suitable pre-processing method for the stream-flow data and an appropriate optimization model has to be integrated in order re-adjust the weights and biases associated with the model structure. On top of that, artificial intelligent models require “trial and error” procedures in order to be properly tuned (number of hidden layers, number of neurons within the hidden layers and the type of the transfer function). However, soft computing approach experienced several problems while calibration such as over-fitting. In this research, the Response Surface Method (RSM) is improved based on high-order polynomial functions for forecasting the river stream-flow namely; High-Order Response Surface (HORS) method. Several higher orders have been examined, second, third, fourth and fifth polynomial functions in order to figure out the best fit that able to mimic the pattern of stream-flow. In order to demonstrate the effectiveness of the proposed model, monthly stream-flow time series data located in Aswan High Dam (AHD) has been examined. A detailed analysis of the overall statistical indicators revealed that the proposed method showed outstanding performance for monthly stream-flow forecasting at AHD. It could be concluded that the fifth order polynomial function outperforms the other orders of the polynomial functions especially with May model who achieved minimum MAE 0.12, NRMSE 0.07, MSE 0.03 and maximum SF and R2 (0.97, 0.99) respectively.
Keywords: Stream-flow forecasting; Response surface method; High-order response surface; Aswan High Dam (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-016-1397-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:30:y:2016:i:11:d:10.1007_s11269-016-1397-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-016-1397-4
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().