EconPapers    
Economics at your fingertips  
 

An Efficient Method to Correct Under-Dispersion in Ensemble Streamflow Prediction of Inflow Volumes for Reservoir Optimization

Richard Arsenault (), Marco Latraverse and Thierry Duchesne
Additional contact information
Richard Arsenault: Université Laval
Marco Latraverse: Rio Tinto
Thierry Duchesne: Université Laval

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2016, vol. 30, issue 12, No 19, 4363-4380

Abstract: Abstract Ensemble streamflow prediction (ESP) has been widely used to gain insight on possible future inflows to hydropower reservoirs. However underestimation of climate, model structure and initial condition uncertainty often leads to under-dispersed ESP forecasts. In this paper, we present a novel approach called “Hindcast-mode Uncertainty Estimation” (HUE) to efficiently add variability in ESP forecasts to reduce their under-dispersion. The method was tested on a Canadian catchment used by Rio Tinto – Aluminium division to produce hydropower for their aluminium smelting plants. This project was focused on correcting long-term predictions of freshet runoff volumes to optimize drawdown volumes, with up to 6 months of lead time. It was found that by adding an error term to the hydrological model’s snow water equivalent (SWE) state variable at the time of forecast in hindcasting mode, the resulting simulation could be forced to perfectly reproduce the freshet runoff volume. This error term was computed for all years on record which enabled modeling of the error’s distribution. This distribution can then be sampled from to add noise to the model’s SWE at the start of a new ESP forecast. Results show that the current winter ESP forecasts are strongly under-dispersed for the freshet runoff volume estimation and that the proposed method is able to widen the ESPs to correct the under-dispersion problem. This was validated by using Talagrand diagrams which shifted from a U-shape (prior to HUE) to a uniform distribution (with HUE). The project objectives of correcting the ESP forecast’s under-dispersion in spring runoff estimations was thus attained with minimal effort, bypassing the need to perform more complex ensemble data assimilation techniques.

Keywords: ESP; Under-dispersion; Reservoir optimization; Ensemble forecasts; Hydrologic modelling (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-016-1425-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:30:y:2016:i:12:d:10.1007_s11269-016-1425-4

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-016-1425-4

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:30:y:2016:i:12:d:10.1007_s11269-016-1425-4