Influence of Time Discretization and Input Parameter on the ANN Based Synthetic Streamflow Generation
Maya Rajnarayan Ray and
Arup Kumar Sarma ()
Additional contact information
Maya Rajnarayan Ray: Galgotia College of Engineering & Technology
Arup Kumar Sarma: Indian Institute of Technology
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2016, vol. 30, issue 13, No 15, 4695-4711
Abstract:
Abstract The capability of ANN to generate synthetic series of river discharge averaged over different time steps with limited data has been investigated in the present study. While an ANN model with certain input parameters can generate a monthly averaged streamflow series efficiently; it fails to generate a series of smaller time steps with the same accuracy. The scope of improving efficiency of ANN in generating synthetic streamflow by using different combinations of input data has been analyzed. The developed models have been assessed through their application in the river Subansiri in India. Efficiency of the ANN models has been evaluated by comparing ANN generated series with the historical series and the series generated by Thomas-Fiering model on the basis of three statistical parameters-periodical mean, periodical standard deviation and skewness of the series. The results reveal that the periodical mean of the series generated by both Thomas–Fiering and ANN models are in good agreement with that of the historical series. However, periodical standard deviation and skewness coefficient of the series generated by Thomas–Fiering model is inferior to that of the series generated by ANN.
Keywords: Synthetic streamflow; Artificial neural network; Input parameters; Time step discretization (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-016-1448-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:30:y:2016:i:13:d:10.1007_s11269-016-1448-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-016-1448-x
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().