Optimal Pre-storm Flood Hedging Releases for a Single Reservoir
Rui Hui (),
Jay Lund (),
Jianshi Zhao () and
Tongtiegang Zhao ()
Additional contact information
Rui Hui: University of California-Davis
Jay Lund: University of California-Davis
Jianshi Zhao: Tsinghua Univeristy
Tongtiegang Zhao: Tsinghua Univeristy
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2016, vol. 30, issue 14, No 9, 5113-5129
Abstract:
Abstract Flood hedging reservoir operation is when a pre-storm release creates a small flood downstream to reduce the likelihood of a more damaging but uncertain larger flood in the future. Such pre-storm releases before a flood can increase reservoir storage capacity available to capture more severe flood flows, but also can immediately increase downstream flood damage and reduce stored water supply. This study develops an optimization model for pre-storm flood hedging releases and examines some necessary theoretical conditions for optimality, considering hydrologic uncertainty from flood forecasts and engineering uncertainty from flood failures. Theoretically, the ideal optimality condition for pre-storm flood hedging releases is where the current marginal damage from the hedging release equals the future expected marginal damage from storm releases. Additional water supply losses due to pre-storm releases tend to reduce pre-storm flood hedging releases. The overall flood damage cost to be minimized must be a convex function of pre-storm hedging releases for flood hedging to be optimal. Such convexity is determined by the overall flood risk together with the probability distribution of storm forecasts. Increasing the convexity of the failure probability function can induce more pre-storm hedging release. Categorized by flood risk likelihood downstream, forecasted storms that are large, but not yet overwhelming flood management systems, drive optimal flood hedging operation. A wide range of near-optimal hedging releases is observed in numerical examples, providing options for more rational water resources management decisions.
Keywords: Flood hedging; Pre-storm release; Optimization; Reservoir flood operation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-016-1472-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:30:y:2016:i:14:d:10.1007_s11269-016-1472-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-016-1472-x
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().