Deep Feature Learning Architectures for Daily Reservoir Inflow Forecasting
Chuan Li,
Yun Bai () and
Bo Zeng
Additional contact information
Chuan Li: Dongguan University of Technology
Yun Bai: Dongguan University of Technology
Bo Zeng: Dongguan University of Technology
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2016, vol. 30, issue 14, No 11, 5145-5161
Abstract:
Abstract Inflow forecasting applies data supports for the operations and managements of reservoirs. To better accommodate the sophisticated characteristics of the daily reservoir inflow, two deep feature learning architectures, i.e., deep restricted Boltzmann machine (DRBM) and stack Autoencoder (SAE), respectively, are introduced in this paper. This study sheds light on the application of deep learning architectures for daily reservoir inflow forecasting, which has been attracting much attention in various areas for its ability to extract and learn useful features from a large number of data. Evaluations are made comparing the basic feed forward neural network (FFNN), the autoregressive integrated moving average (ARIMA), and two categories deep neural networks (DNNs) constructed by the integrations the FFNN with two deep feature learning architectures, named DRBM-based NN and stack SAE-based NN, respectively. Two daily inflow series of the Three Gorges reservoir (1/1/2000–31/12/2014) and the Gezhouba reservoir (1/1/1992–31/12/2014), China, are applied for four modeling exercises, respectively. The results show that, the two DNN models overwhelm the FFNN and the ARIMA models in terms of mean absolute percentage error, normalized root-mean-square error, and threshold statistic criteria.
Keywords: Deep neural networks; Deep restricted Boltzmann machine; Stack autoencoders; Reservoir inflow; Forecast (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-016-1474-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:30:y:2016:i:14:d:10.1007_s11269-016-1474-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-016-1474-8
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().