EconPapers    
Economics at your fingertips  
 

Optimization of Hedging Rules for Reservoir Operation During Droughts Based on Particle Swarm Optimization

Mike Spiliotis (), Luis Mediero () and Luis Garrote ()
Additional contact information
Mike Spiliotis: Democritus University of Thrace
Luis Mediero: Technical University of Madrid
Luis Garrote: Technical University of Madrid

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2016, vol. 30, issue 15, No 14, 5759-5778

Abstract: Abstract This paper presents a methodology to achieve the identification of optimal hedging rules for operating reservoir systems, seeking to mitigate the drought impacts. The heuristic Particle Swarm Optimization (PSO) method is adopted as the optimization solver. This procedure establishes a two-phase method that combines PSO with the simulation of the water system, representing a system of reservoirs that are jointly operated to satisfy a set of demands with different priorities. The hedging rules are based on monthly storage levels that trigger restrictions on the demands. As model parameters, monthly rule activation thresholds and rationing factors were used for each type of demand. The optimization procedure minimizes an objective function that penalizes large deficits and assigns different weights to different demand types. Since the whole problem is quite complex, its dimensionality is reduced through: i) a set of candidate monthly activation thresholds are selected a priori associated to given risk conditions; and ii) the rationing factors are defined for every demand of each threshold throughout all months. In addition, an effort is made to avoid the trap in local optimums, whilst several other comments considering the application of the PSO method in the examined applications are provided. The procedure has been successfully applied to four water resource systems in Spain. From the application it can be seen that the deficits of the water supply demand are nearly removed, thanks to the larger weight given to the deficits of this demand type. The irrigation deficits are also reduced, since we lead to a sequence of smaller shortages than only one potential catastrophic shortage.

Keywords: Drought; Risk thresholds; Hedging rules for reservoir operation; Particle swarm optimization; Adaptive water resources management (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-016-1285-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:30:y:2016:i:15:d:10.1007_s11269-016-1285-y

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-016-1285-y

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:30:y:2016:i:15:d:10.1007_s11269-016-1285-y