Pumping Optimization of Coastal Aquifers Assisted by Adaptive Metamodelling Methods and Radial Basis Functions
Vasileios Christelis () and
Aristotelis Mantoglou
Additional contact information
Vasileios Christelis: National Technical University of Athens
Aristotelis Mantoglou: National Technical University of Athens
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2016, vol. 30, issue 15, No 18, 5845-5859
Abstract:
Abstract The application of metamodelling frameworks is a popular approach to handle the computational cost arising from complex computer simulations and global optimization algorithms in simulation-optimization routines. In this paper, Radial Basis Functions (RBF) are used as metamodels for the computationally expensive variable-density flow and salt transport numerical simulations, in a pumping optimization problem of coastal aquifers. While RBF metamodels have been fairly utilized in many engineering optimization problems, their use is very limited in coastal aquifer management. Two adaptive metamodelling frameworks are employed, that is, the adaptive-recursive approach and the metamodel-embedded evolution strategy. In both frameworks, cubic RBF models are used to approximate the constraint functions imposed on the coastal aquifer pumping optimization problem. The optimal pumping rates are first calculated based on the variable-density and salt transport numerical models of seawater intrusion. The resulting optimal solutions and the computational times are set as benchmark values in order to assess the performance of the metamodelling optimization strategies. Results indicate that the metamodel-embedded evolution framework outperformed in terms of computational efficiency the adaptive-recursive approach while it successfully located the region of the global optimum. Furthermore, with the metamodel-embedded evolution strategy the computational time of the variable-density-based optimization was reduced by 96 %.
Keywords: Coastal aquifers; Pumping optimization; Metamodels; Radial basis functions; Global optimization (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-016-1337-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:30:y:2016:i:15:d:10.1007_s11269-016-1337-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-016-1337-3
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().