Lake Level Forecasting Using Wavelet-SVR, Wavelet-ANFIS and Wavelet-ARMA Conjunction Models
Maryam Shafaei () and
Ozgur Kisi ()
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2016, vol. 30, issue 1, 79-97
Abstract:
Accurate predicting of lake level fluctuations is essential and basic in water resources management for water supply purposes. The predicting of lake level is complicated because of it is affected by nonlinear hydrological processes. This paper applies integrated wavelet and auto regressive moving average (ARMA), adaptive neuro fuzzy inference system (ANFIS) and support vector regression (SVR) models for forecasting monthly lake level fluctuations. First, lake level time series is decomposed into low and high frequency components by using discrete wavelet transform. Then, each component is separately predicted by using ARMA, ANFIS and SVR models. Finally, the predicted components are summed to obtain estimated original lake level time series. The performance of the proposed WSVR (Wavelet-SVR), WANFIS (Wavelet-ANFIS) and WARMA (Wavelet-ARMA) models is compared with single ARMA, SVR and ANFIS models. Results show that the integrated models give better precision in forecasting lake levels in the study region when compared to single models. WSVR model is found to be slightly better than the other integrated models. Copyright Springer Science+Business Media Dordrecht 2016
Keywords: Forecasting; Lake level; Wavelet-ARMA; Wavelet-ANFIS; Wavelet-SVR (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-015-1147-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:30:y:2016:i:1:p:79-97
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-015-1147-z
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().