Modelling Water Distribution Systems with Deficient Pressure: An Improved Iterative Methodology
Ping He,
Tao Tao,
Kunlun Xin (),
Shuping Li and
Hexiang Yan
Additional contact information
Ping He: Tongji University
Tao Tao: Tongji University
Kunlun Xin: Tongji University
Shuping Li: Tongji University
Hexiang Yan: Tongji University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2016, vol. 30, issue 2, No 9, 593-606
Abstract:
Abstract In the last three decades, many researchers have proposed different models for water distribution network (WDN) hydraulic analysis by head-driven analysis (HDA). By considering a pressure-discharge relationship (PDR), head-driven analysis (HDA) can avoid deviation caused by traditional demand-driven analysis (DDA) under abnormal conditions. Generally, there are three types of HDA models: 1) models achieved by embedding a PDR into DDA, 2) models using EPANET structures such as emitter or tank to take place of PDR, 3) models aiming at modifying nodal outflows to satisfy PDR based on EPANET. Among these models, modifying nodal outflows is flexible to simulate network with different PDRs and specify parameters related to PDR. Most of the models use iterative algorithms to solve HDA problems; however, present ways to ensure convergence of models are still inadequate. The purpose of this paper is to present a new way to meet the iterative convergence when modifying nodal outflows based on PDR and leakage. This new methodology has been incorporated into the hydraulic network solver EPANET and is formalized algorithmically as EPANET-IMNO. Then two typical networks are used to test EPANET-IMNO, and the results demonstrate that EPANET-IMNO can converge well and applied successfully both in static simulation and extended period simulation. Different pressure deficiency conditions are tested to further confirm the flexibility and the convergence of EPANET-IMNO. Furthermore, quality analysis results back that pressure reduction can be a practical way in contamination accident response.
Keywords: Water distribution network; Hydraulic simulation; Head-driven analysis; Demand-driven analysis; Convergence; Quality analysis (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-015-1179-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:30:y:2016:i:2:d:10.1007_s11269-015-1179-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-015-1179-4
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().