Optimizing Water Management for Irrigation Under Climate Uncertainty: Evaluating Operational and Structural Alternatives in the Lower Republican River Basin, Kansas, USA
A. E. Brookfield () and
C. Gnau ()
Additional contact information
A. E. Brookfield: University of Kansas
C. Gnau: Kansas Water Office
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2016, vol. 30, issue 2, No 10, 607-622
Abstract:
Abstract Structural and operational management methods are used to meet water demands in watersheds around the world. Most river systems are affected by reservoirs, dams, or other engineering structures, and decisions regarding their construction and operation are made in advance of knowing what water demands will be. Numerical models are used to predict future water needs and evaluate the effectiveness of water management strategies. It is important to consider a variety of management methods and future environmental conditions to ensure future demands can be met. In this work, a coupled surface water operations and hydrologic model of the Lower Republican River Basin in portions of Nebraska and Kansas, USA is used to evaluate the ability of several water management strategies, including structural and operational, to meet future demands of a water-stressed agricultural basin under a variety of future climate scenarios. Simulations indicate recent administrative and operational changes to the distribution of water between Nebraska and Kansas have significantly decreased water shortages for irrigation districts in Kansas and will continue to do so. Simulations also indicate that structural alternative of reservoir expansion is most effective at minimizing shortages to demands under a repeat of historical climate conditions. However, an operational alternative of increasing water supplies for Kansas' exclusive use, such as those historically purchased under the Warren Act (US Code 43 Section 523–524), is most effective at minimizing shortages to demands under a hotter and drier climate, demonstrating how optimal water management strategies can vary significantly depending upon climate scenario.
Keywords: Surface water operations; Climate change; Reservoir management; Numerical model; Lower Republican River basin (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-015-1180-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:30:y:2016:i:2:d:10.1007_s11269-015-1180-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-015-1180-y
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().