EconPapers    
Economics at your fingertips  
 

Improving Forecasting Accuracy of Streamflow Time Series Using Least Squares Support Vector Machine Coupled with Data-Preprocessing Techniques

Aman Mohammad Kalteh ()
Additional contact information
Aman Mohammad Kalteh: University of Guilan

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2016, vol. 30, issue 2, No 18, 747-766

Abstract: Abstract Highly reliable forecasting of streamflow is essential in many water resources planning and management activities. Recently, least squares support vector machine (LSSVM) method has gained much attention in streamflow forecasting due to its ability to model complex non-linear relationships. However, LSSVM method belongs to black-box models, that is, this method is primarily based on measured data. In this paper, we attempt to improve the performance of LSSVM method from the aspect of data preprocessing by singular spectrum analysis (SSA) and discrete wavelet analysis (DWA). Kharjeguil and Ponel stations from Northern Iran are investigated with monthly streamflow data. The root mean square error (RMSE), mean absolute error (MAE), correlation coefficient (R) and coefficient of efficiency (CE) statistics are used as comparing criteria. The results indicate that both SSA and DWA can significantly improve the performance of forecasting model. However, DWA seems to be superior to SSA and able to estimate peak streamflow values more accurately. Thus, it can be recommended that LSSVM method coupled with DWA is more promising.

Keywords: Monthly streamflow forecasting; Least squares support vector machine; Singular spectrum analysis; Discrete wavelet analysis (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-015-1188-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:30:y:2016:i:2:d:10.1007_s11269-015-1188-3

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-015-1188-3

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:30:y:2016:i:2:d:10.1007_s11269-015-1188-3