Rainfall-Runoff Prediction Using Dynamic Typhoon Information and Surface Weather Characteristic Considering Monsoon Effects
Chih-Chiang Wei (),
Nien-Sheng Hsu and
Chien-Lin Huang
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2016, vol. 30, issue 2, 877-895
Abstract:
In meteorology and engineering, the prediction of quantitative precipitation and streamflow during typhoon events is a vital research topic. In Southern Taiwan, typhoons often occur in the summer. The interaction between the typhoon circulation and southwesterly monsoon flow frequently transports abundant moisture into Southern Taiwan leading to the substantial pouring rains. This study proposes a rainfall-runoff prediction methodology for addressing the complicated inflow forecasts of southwest monsoon rainfall during typhoons in the upper Tsengwen River in Southern Taiwan. This paper is novel in that it incorporates various data types (reservoir inflows, watershed rainfalls, typhoon information, and ground-weather characteristics) that were applied as model inputs. The most frequently used support vector regressions were employed to construct the rainfall-runoff models on the basis of three designed data combination scenarios. Typhoons Kalmaegi (2008), Fung-wong (2008), Jangmi (2008), and Morakot (2009) were used as validation typhoons. The model cases, involving lead times of 1 h to 6 h, were evaluated. Six performance criteria were used in the three scenarios to highlight the scenario capable of identifying the optimal performance level. In addition, this study compared the error rates between accumulation observations and accumulation predictions. The results showed that Scenario 3, which considered typhoon information and ground-weather characteristics simultaneously, had superior watershed rainfall and runoff predictions to those of the other scenarios. Thus, this study demonstrated the feasibility of using the proposed methodology to increase the accuracy of rainfall-runoff predictions. Copyright Springer Science+Business Media Dordrecht 2016
Keywords: Rainfall-runoff; Monsoon effect; Typhoon; Prediction (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-015-1196-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:30:y:2016:i:2:p:877-895
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-015-1196-3
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().