EconPapers    
Economics at your fingertips  
 

Evaluating Retention Capacity of Infiltration Rain Gardens and Their Potential Effect on Urban Stormwater Management in the Sub-Humid Loess Region of China

S. Tang, W. Luo (), Z. Jia, W. Liu, S. Li and Y. Wu
Additional contact information
S. Tang: Xi’an University of Technology
W. Luo: Yangzhou University
Z. Jia: Yangzhou University
W. Liu: North Carolina State University
S. Li: Xi’an University of Technology
Y. Wu: Xi’an University of Technology

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2016, vol. 30, issue 3, No 6, 983-1000

Abstract: Abstract Recognized as an effective low impact development (LID) practice, rain gardens have been widely advocated to be built with urban landscaping for stormwater runoff reduction through the retention and infiltration processes; but the field performance and regional effect of rain gardens have not been thoroughly investigated. In this paper, we presented a four-year monitoring study on the performance of a rain garden on stormwater retention; hydrological models were proposed to predict the potential effect of rain gardens on runoff reduction under different storms and the future urban development scenarios. The experimental rain garden was constructed in a sub-humid loess region in Xi’an, China; it has a contributing area ratio of 20:1 and depth of 15 cm. During the study period, we observed 28 large storm events, but only 5 of them caused overflow from the rain garden. The flow reduction rate for the overflow events ranged from 77 to 94 %. The runoff coefficient from the contributing area (RC) was reduced to less than 0.02 on annual basis, and 0.008 over the four years average. Field observations also showed that infiltration rate remained stable during the operation period. The predictions based on the future landuse and storm variability of the study area showed that by converting a small fraction of the city land area into rain gardens, the negative hydrological effect from expansion of impervious area can be reduced significantly. The challenge, however, lies in how to plan and build rain gardens as an integral part of the urban landscape.

Keywords: Rain garden; Storm runoff; Design storm; Infiltration; Overflow; LID (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-015-1206-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:30:y:2016:i:3:d:10.1007_s11269-015-1206-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-015-1206-5

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:30:y:2016:i:3:d:10.1007_s11269-015-1206-5