A Novel Spatiotemporal Statistical Downscaling Method for Hourly Rainfall
Gwo-Fong Lin (),
Ming-Jui Chang and
Chian-Fu Wang
Additional contact information
Gwo-Fong Lin: National Taiwan University
Ming-Jui Chang: National Taiwan University
Chian-Fu Wang: National Taiwan University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2017, vol. 31, issue 11, No 13, 3465-3489
Abstract:
Abstract Finer spatiotemporal resolution rainfall data is essential for assessing hydrological impacts of climate change on medium and small basins. However, existing methods pay less attention to the inter-day correlation and diurnal cycle, which can strongly influence the hydrological cycle. To address this problem, we present a spatiotemporal downscaling method that is capable of reproducing the inter-day correlation, the diurnal cycle, and rainfall statistics on daily and hourly scales. The large-scale datasets, which we obtained from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis dataset (NNR) and general circulation model (GCM) outputs, and local rainfall data are analyzed to assess the impacts of climate change on rainfall. Our proposed method consists of two steps: spatial downscaling and temporal downscaling. We apply spatial downscaling first to obtain the relationship between large-scale datasets and daily rainfall at a site scale using a k-nearest neighbor method (KNN). Then, we conduct an hourly downscaling of daily rainfall in the second step using a genetic algorithm-based KNN (GAKNN) with the inter-day correlation and the diurnal cycle. Furthermore, we analyzed changes in rainfall statistics for the periods 2046–2065 and 2081–2100 under the A2, A1B, and B1 scenarios of the third generation Coupled Global Climate Model (CGCM3.1) and Bergen Climate Model version 2 (BCM2.0). An application of our proposed method to the Shihmen Reservoir basin (Taiwan) has shown that it could accurately reproduce local rainfall and its statistics on daily and hourly scales. Overall, the results demonstrated that the proposed spatiotemporal method is a powerful tool for downscaling hourly rainfall data from a large-scale dataset. The understanding of future changes of rainfall characteristics through our proposed method is also expected to assist the planning and management of water resources systems.
Keywords: Climate change; Rainfall; Statistical downscaling; K-nearest neighbor method; Genetic algorithm (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-017-1679-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:31:y:2017:i:11:d:10.1007_s11269-017-1679-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-017-1679-5
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().