Soft Computing Techniques for Rainfall-Runoff Simulation: Local Non–Parametric Paradigm vs. Model Classification Methods
Mohammad Rezaie-Balf (),
Zahra Zahmatkesh () and
Sungwon Kim ()
Additional contact information
Mohammad Rezaie-Balf: Graduate University of Advanced Technology-Kerman
Zahra Zahmatkesh: Graduate University of Advanced Technology-Kerman
Sungwon Kim: Dongyang University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2017, vol. 31, issue 12, No 10, 3843-3865
Abstract:
Abstract Accurate simulation of rainfall-runoff process is of great importance in hydrology and water resources management. Rainfall–runoff modeling is a non-linear process and highly affected by the inputs to the simulation model. In this study, three kinds of soft computing methods, namely artificial neural networks (ANNs), model tree (MT) and multivariate adaptive regression splines (MARS), have been employed and compared for rainfall-runoff process simulation. Moreover, this study investigates the effect of input size, including number of input variables and number of data time series on runoff simulation by the developed models. Inputs to the simulation models for calibration and validation purposes consist two parts: I1: five variables, including daily rainfall and runoff time series (30 years) with lag times, and I2: twelve variables, including daily rainfall and runoff time series (10 years). To increase the model performances, optimal number and type for input variables are identified. The efficiency of the training and testing performances using the ANNs, MT and MARS models is then evaluated using several evaluation criteria. To implement the methodology, Tajan catchment in the northern part of Iran is selected. Based on the results, it was found that using I1 as input to the developed models results in higher simulation performance. The results also provided evidence that MT (R = 0.897, RMSE = 6.70, RSE = 0.33) with set I2 is capable of reliable model for rainfall-runoff process compared with MARS (R = 0.892, RMSE = 7.47, RSE = 0.83) and ANNs (R = 0.884, RMSE = 7.40, RSE = 0.43) models. Therefore, size (length of data time series) and type of input variables have significant effects on the modeling results.
Keywords: Rainfall-runoff process; Model tree; Multivariate adaptive regression splines; Artificial neural networks; Soft computing; Tajan catchment; Iran (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-017-1711-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:31:y:2017:i:12:d:10.1007_s11269-017-1711-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-017-1711-9
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().